Yu (Demi) Qin

New Orleans, LA 70118 Website In LinkedIn

EDUCATION

Tulane University, New Orleans, LA	
Ph.D. in Computer Science	2018 - 2024
Dissertation Topic: Metric Learning on Topological Descriptors	
Advisors: Prof. Brian Summa, Prof. Carola Wenk	GPA: 3.8/4.0
Chongqing University, Chongqing, China	
B.S. in Computer Science	2014 - 2018
Graduated top of the class (Rank 1/145)	GPA: 3.8/4.0

PROFESSIONAL EXPERIENCE

Tulane University

Research Assistant at Tulane Visualization and Graphics Group

- Developed and deployed **large data analysis and visualization** techniques integrating machine learning (ML), visualization (VIS) and topological data analysis (TDA).
- Achieved 100x speed-up in data analysis and visualization pipelines for medical imaging and climate modeling domains. Published 5 first-author papers in top-tier venues (AAAI, NeurIPS, IEEE VIS), including a Best Paper Award at IEEE VIS 2024.
- Applied advanced ML models (**CNNs, GANs, GNNs**) to enhance complex data analysis and interpretation. Improved efficiency and accuracy in applications including medical imaging, climate modeling, graphs, and 3D shapes, supporting scalable and precise data analysis and visualization.

Hitachi America, Ltd.

Jul 2023 – Feb 2024

Jun 2022 – Aug 2024

Oct 2024 – Present

Sep 2018 – Present

Research Intern at IoT Edge Lab

- Developed dynamic production model using **GNNs** to learn supply chain networks in collaboration with Stanford University. This is the first GNN model capable of jointly learning internal production functions and forecasting transactions in supply chain networks.
- Achieved a 6-50% improvement in production function inference and an 11-62% enhancement in transaction forecasting on real and synthetic data. Published at AAAI 2025 [Paper] and presented these findings at the Stanford Graph Learning Workshop 2023 (invited talk).
- Designed an interpretable sequence prediction model using a custom **Recurrent Neural Network** (**RNN**) with an attention mechanism. Enhanced BoM estimations by improving accuracy and efficiency in product consumption forecasting.

National Renewable Energy Laboratory (NREL)

Graduate Intern at Data, Analysis, and Visualization Group

- Developed efficient methods for detecting extreme climate events using TDA on temporal-spatial climate data. Reduced detection time from quadratic to linear complexity, resulting in a 10x increase in computational efficiency. Presented and published findings at EnergyVis 2023 [Slide] [Video].
- Designed a node lifting approach to represent higher-order interactions inherent in complex networks.
 Expanded topological deep learning by transforming a graph into a hypergraph, where hyperedges are formed by grouping nodes that share the same attribute.

SELECTED TECHNICAL PROJECTS

Machine Learning Assisted Gigantic-Image Cancer Margin Scanner (ARPA-H)

Announced by President Biden as part of the Cancer Moonshot Project, Website

• Developed an ML pipeline for pseudo H&E image generation, replacing the multi-step Beer-Lambert law based algorithm with a **Pix2Pix GAN** model, enabling automated, high-fidelity histopathology visualization with real-time inference on large whole-slide images.

- Designed a **neural style transfer** (**NST**) framework to adapt SIM images into realistic H&E-stained slides, improving staining accuracy for emerging H&E foundation models by refining reference image selection and optimizing VGG19 feature extraction.
- Led the development of an advanced image annotation platform for medical imaging. Integrated **DEACT** web UI framework and **Girder** data management platform. Developed a custom shape analysis plug-in, advancing the ability to annotate and analyze complex morphological data in cancer research.

Rapid and Precise Topological Comparison with Merge Tree Neural Networks

Website, Paper

Website, Paper

Jun 2023 – Mar 2024

- Developed the first neural network model for merge tree comparison (MTNN) by integrating **GNNs** with a novel topological attention mechanism.
- Achieved a 100x speed-up over the previous state-of-the-art on benchmark datasets with an error rate below 0.1%, significantly advancing large-scale data analysis and visualization techniques. Published and awarded Best Paper at IEEE VIS 2024.

Scalable, Content-Based, Domain-Agnostic Search of Scientific Data

Aug 2021 – Sep 2023

• Initiated the first machine learning model for generating binary topological representations using **GANs** with domain-oblivious training. Reduced clustering time from hours to milliseconds and enabled rapid, interactive queries across diverse scientific data domains. Published at IEEE VIS 2021.

PUBLICATIONS (Full List)

- [1] Yu Qin, Brittany Terese Fasy, Carola Wenk, and Brian Summa. "Rapid and Precise Topological Comparison with Merge Tree Neural Networks," *IEEE Transactions on Visualization and Computer Graphics (IEEE VIS 2024)*. **Q** Best Paper Award
- [2] Serina Chang, Zhiyin Lin, Benjamin Yan, Swapnil Bembde, Qi Xiu, Chi Heem Wong, **Yu Qin**, Frank Kloster, Xi Luo, Raj Palleti, and Jure Leskovec. "Learning production functions for supply chains with graph neural networks," *AAAI* 2025 (*oral*).
- [3] Yu Qin, Brittany Terese Fasy, Carola Wenk, and Brian Summa. "Visualizing Topological Importance: A Class-Driven Approach." *Topological Data Analysis and Visualization (TopoInVis)*, IEEE, 2023.
- [4] **Yu Qin**, Graham Johnson, and Brian Summa. "Topological Guided Detection of Extreme Wind Phenomena: Implications for Wind Energy." *EnergyVis*, IEEE, 2023.
- [5] **Yu Qin**, Brittany Terese Fasy, Carola Wenk, and Brian Summa. "A domain-oblivious approach for learning concise representations of filtered topological spaces for clustering." *IEEE Transactions on Visualization and Computer Graphics* (*IEEE VIS 2021*).
- [6] Yu Qin, Brittany Terese Fasy, Brian Summa, and Carola Wenk. "Comparing distance metrics on vectorized persistence summaries." *Topological Data Analysis and Beyond Workshop, NeurIPS* 2020.

SKILLS

Programming: Python (Pandas, NumPy, sklearn), C++ (OpenGL, OpenCV), Java, Julia, R, JavaScript Machine Learning: PyTorch, TensorFlow, PyG (PyTorch Geometric)
Data Visualization: D3.js, React, Matplotlib, R Shiny, ParaView, ggplot, Power BI
Databases: MongoDB, MySQL, Amazon Redshift
Parallel Computing: OpenMP, MPI
Tools & Platforms: Anaconda, Git, Docker, AWS

SERVICES and AWARDS

- **Best Paper Award**, IEEE VIS 2024 (Top 1% of submissions)
- Program Committee, NeurReps at NeurIPS 2023 2024
- GHC Scholar, Grace Hopper Celebration 2023
- Student Volunteer with Travel Fund, IEEE VIS 2021 2023
- Student Volunteer with Travel Fund, NeurIPS 2022
- $\circ~$ Mentor, Women in Machine Learning (WiML) PhD Mentoring Program, 2022 2023
- National Scholarship (China), 2017 (Top 0.2% Nationwide)